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ABSTRACT
This study gives strategies for estimating the modified Allan variance (mvar),
and formulas for computing the equivalent degrees of freedom (edf) of the es-
timators. A third-difference formulation of mvar | eads to a tractable fornula
for edf in the presence of power-law phase noise. The effect of estimation stride
on cdf is tabulated. First-degree rational-function approximtions for edf arc
derived, and their performances tabulated. A theorem allow ng conservative

estimtes of cdf in the presence of conmpound 1 ioise processes is given.




I. INTRODUCTION

Allan variance (AVAR) and modified Allan variance (MVAR) are statistical measures of frac-
tional frequency instability. They are both used extensively to measure and characterize the
stability performance of clocks, oscillators, and systems for disseminate ing time and frequency
[1][10][11][12]. Letusgive brief definitions. The raw data for these measures comprise a se-
quence xy, of time residuals, say from a comparison of two clocks or a phase comparison of
two oscillators. We assume here that the samples ., are evenly spaced in time, with sample
period To. Let an averaging fime T = m7p be given, where m is an integer. The Allan
variance, denoted by cT;(7), is defined as 1/ (272) times the time average or mathematical
expect ation of the squares of second differences, wit h step m, of the sequence «,. Modi-
fied Allan variance, denoted by mod ai(r),is defined in the same way, except that the x,

sequence is replaced by the sequence Z,, (m) of moving averages

m-1

_ 1
Fp(m) = m Z Ty ;. (1)
)

By virtue of the second difference in their definitions, stable statistical estimates of Avar
and war can be accumulated in the presence of a class of of phase noise models, the processes
with stationary second increments [10], from which useful fits to the behavior of oscillators,
amplifiers, etc., can be selected. Special cases are power-law models, associated with spectral
densities having the property

Se(f) ~ const-f#

as f— O, where 3 > --5. In the usual nomenclature of frequency and time, the noises
associated with 8 = O, — 1, — 2, -3, —4 are called white phase (wh ph), flicker phase (fi
ph), white frequency (wh fr), flicker frequency (fl fr), and random-walk frequency (rw fr),

respective] y. Nonintegral values of 8 are also allowed; the corresponding noises are called




{fractional”,

A log-log plot of measured o,(7) or mod oy(7)vs 7, the familiar o-7 plot, often indicates
phase noise that can be modeled as a linear combination of uncorrelated power-law compo-
nents, the component associated with 8 being identified by a straight-line section with slope
—;—(—3 — f3). The main advantage of war over avAar i s the increased range of B over which
this slope relationship holds:—5< 8< -1 for avar, - 5< B < 1 for mvar [3]. In particular,
a mod o,(7) plot can easily distinguish white phase (0 7732 ) from flicker phase (o o ~1).
The corresponding asymptotic o,(7) dependencies, 7+ and T'/log(ar) for some a, can
barely be distinguished in practice.

It would seem from (1) that the extra averaging operation that gives war its superior
power of discrimination also multiplies the amount of calculation by a factor of m. Previous
papers [2] [7], which treat the mechanics of war computation, show how to reduce that
factor to 4/3, excluding an initial operation on the data set. The approach given in [7]
reformulates the definition of M var in terms of third differences of the cumulative sum
of the time residuals. Here, after restating this formulation, we apply it to the study of
the confidence of estimators” of war in terms of their equivalent degrees of freedom (edf).
Tractable expressions for edf in the presence of power-law noise allow extensive numerical
trials of estimator parameters, especially the estimation period, the amount by which the
estimator summands are shifted in time. The outcome is a practical guideline for estimator
design. Simple approximations to the edf of these estimators are constructed and tested,
with the aim of providing a convenient package for computing approximate confidence values
for most experimental situations. Finally, we show how to obt ain conservative confidence

values in the presence of phase noise whose spectrum is a sum of power laws.




11. MVAR anND ITs ESTIMATORS

A. Third-Difference Formulation

The definition, calculation, and statistical theory of modified Allan variance are all simplified
by an approach that derives mvar from the cumulative sum of the time residuals x.. We
begin wit h the standard formulation. Choose an averaging time 7 =770, and form the
time-residual moving averages #,, (1) from (1). Let A,, be the backward difference operator,
defined Ly A, fn = fa— fu-m for any sequence f,. Use the second-difference operator A2,

to form the war filter output
z(m) = A?z,(m) (2)
—  Fo(m) — 28n_yn(10) 4 Fp,_2m(m)

By definition,
2 1 /9
mod oy (7) = 53 <zn(m)> , (3)
where () denotes either mathematical expectation E or an infinite time average over n. Note
that, although only the variable 7 appears, mod 05 (T) depends on bothTand T0. For brevity,
we shall occasionally suppress the dependence of z,(11) on the parameter .

The third-difference formulation expresses z,(m) in terms of the sequence wy, defined by
n
wo=0, uy,= Z.’Itj . (4)
J=1
In terms of u,, the time-residual averages are given by
- 1 1
Zn(m) = — Apwp= — (W - Wwp_pm) , N2 m,
m m
which, combined with (2), gives

1
zp(m) == ;';A?nwn ®)




1
= ;I—l (wﬂ - 3Wn_m + 3Wn-2m - Wy 3m)

for n> 31n.

Formula (5) has several advantages over (2) for use in (3). The filter taking w, to z,(m)
has only four taps; the filter taking z,, to 2,("n) has 3:n taps. The computation of estimates
of mod 03(1) from third differences of w,, is like the computation of estimates of 03 (-r) from
second differences of z,,and the computation of strided estimates is simplified. Finally, it
is easy to construct useful and tractable stochastic models of the w;, sequence. The cost of

these advantages is the computation of w,, from the recursion wy, =: wy -1+ xy,.

B. MVAR Estimator with Variable Stride

To estimate mwarR with limited data, the infinite average in (3) is replaced by a finite average
of the .2,2l (m). When computing analogous estimates of AvAarR by averaging the squares of
A?nmn, it is customary to increase n by either 1 (full overlap) or m (7 overlap). The existing
literature on mvar ([1], for example) usually assumes a step of 1. Here, we allow the step to
vary between these extremes. Let us establish some terminology. We specify an estimation
period 7y= my To, where the positive integer ™4 is called the estimation stride, and we
consider averages over all available values of zgm“"m (m), k> O.

Assume that N time residuals x1,T2,. .. , zy are available. Then there are N + 1 summed
values wy, w1, W2, . ... wy.Let M be the number of sanpl €s of z3mkm, (m) obtainable from

(5). Then M is the largest integer satisfying 3m + (M —1)m;< N, namely,

M= {!; 3m +_1_711_J ’ (6)
my

where |a] denotes the integer part of a. The MVAR estimator to be studied is

1 M-1
V= 27,2M L zgm{—kml(n")' (7)
o




C. Continuous-Time Analog

A continuous-time analog of this set up yields simple and useful approximations. It is conve-
nient to change the definitions, not only of the under lying noise processes (see below), but
also of mvar and V, by changing discrete-time averages to cent inuous-time averages. The
t bird-difference approach works here, as well. Let z:(t) represent time deviation as a function

of time. Write

#57) - 3 [ a(tw) au,

t
2(t;7-) = A2z(t; 1), w(t)= /0 x(u)du.
Then
1
F(t;7) = ;ATw(i),
and hence

2(t;7) = %Afu:(l). (8)

Define the continuous-time analog of mod o2(7)by
a0l(r) = 55 ((67)) ©)
., mo ay(‘r)—iﬁ (T

(identical to Bernier’s asymptotic mvar [3]), and the continuous-averaging estimator V°by

1 fT 9
S t;7)dL. lo
Y, 5757 2°(L; 1) (lo)

Note that if x(t) is available for a duration 7%, then we should let 7' = T — 37-, the duration
of availability of z(i;T). Later, to match properties of V°to those of V, we shall let "= M1,

where M is given by (6).




I1l. Nose MODELS

The statistical properties of V depend on the random processes chosen to represent the sam-
pled time residuals z,. Following Walter's treatment of discrete sampling [13], we use an
explicit discrete-time power-law model instead of a sampled continuous-time model for our
main calculations. This has two advantages. First, we avoid the complications of the inter-
actions among the hardware bandwidth, the sample period, and the averaging time [3] [11].
Second, the discrete-time model works especially well with the third-difference formulation.

Because the measure of estimator confidence to be examined is invariant to scale factors,
we use the most convenient scaling for spectral densities to reduce the complexity of constant
factors in the generalized autocovariances shown in ‘J'able 1. Fact ors for converting to the
standard scaling used by the frequency and time community are given below.

The most critical assumption about the models is the absence of linear frequency drift.
We assume that the drift rate either is zero or is known from considerations external to the
immediate data set. In the latter case, we can assume that the drift has been removed from
the data. In particular, z,, has no long-term quadratic component, wy, has no long-term

cubic component, and z,, (m) has mean zero. This assumption will later be repeated at the

point where it is needed.

A. Discrete-Time Power Laws

Let the two-sided spectral density of the 7p-sampled sequence xp be given by

spl (1) = [2sin(nfro)l®, /1<, (11)

en \ ~|2rf19|” as f — O. e process w,, define y (4) satisfies Al wy, = .
Then S4(f)~|2nf70/° as f — 0. Th defined by (4) satisfies Al

. . 2 .
Because the frequency response of the operator Al is (2 sin (# f70))”, we know that wy, is also




a power-law process, with spectral density
S8 (f) = |2sin (x f10)|.

This frequency-domain description of wy has an equivalent time-domain description, the
generalized autocovariance (GACV) sequence 14 (n), where n runs through all the integers.
This concept, whose definition and theory will not be given here, extends the usual notion of
autocovariance ( ACV) from stationary processes to processes with stationary dt h increments
[5]. GACVs of continuous-time and discrete-time processes have been used in studies of Allan
variance and power-law noise simulation [4] [5] [6] [9]. Table 1 gives formulas for Rﬁ, (n) for the
values of B needed in t his study. The formula for nonintegral 8 in Table 1 is equivalent to
the one given by Kasdin and Walter [9] for power laws. Because passage to the limit as 3
approaches an integer is not straightforward in general, the formulas for integral 3 are derived
from ACVS of stationary power-law processes by solving the difference equation —6% R(n; )
= R(n;vy + 2) repeatedly, where I(n;~y)is the ACV or GACV of a power-law process with
exponent 7y, and 6,2 is the second-order central difference operator with step 1.

Because 3 > -5, we knqw that z,, has stationary second increments, wy, has stationary

third increments, and, for each m, 2, (m) is stationary. The ordinary ACV sequence
R3(n;m) = E 2y n(m)zx ()
can be calculated from K3 (n)by

m2R3(n;m) = —65 R (n) (12)
= —K(n—3m)+ 6K (n —2m) — 15K (n — m) + 20K (n)

—15R4 (n 4+ m) + 6RE (n + 2m) — RS (n + 3m).

This formula follows from (5) and the theory of GACVs of processes with stationary dth




increments.
It is appropriate to note here that (3), Table 1, and (12) give a formula for mvar in the

presence of discrete-time power-law phase noise, namely,

1 1
2 _ 2 — .
modoy (7) = 2TzEzn(m) =3 R3(0;m), (13)

which, when expanded, is equivalent to a formula of Walter ([13], eq (75)).
The standard power-law scaling used by the frequency and time community is based on
a one-sided spectral density, Sg(f)fv ho f©, of fractional frequency y = dz/dtl, where «

=B +2. To convert R4 (n), 1t(n; m), and mod 03 (7) to this scaling, multiply them by the

factor

"2 (am) e (14)

B. Continuous-Time Power Laws

Because the continous-time analog given above avoids sampling altogether, continuous-time
random-process models are appropriate. Let the two-sided spectral density of x(1) be given
Ly

Ss(f) = |2nf)P , ~00 < § <00, (15)

with no high-frequency cutoff. Then, since dw/dl =z, we know that w(t) is also a power-law

process, with spectral density
Se(f) = l2nf|P?.

For 8 > -5, the process w(t) has stationary third increments. Its GACV function K¢ (t) [4] [9]
is also given in Table 1. As with the discrete-time model, the process z(t) given by (8) is

stationary, with ACV function

R (t;7) =Ez2(u+ t;7)2(u;7)




that can be calculated by

TRGT) = —GRG() (16)
= —R,(L—-37)+6R,(t~27)— 161, (L — 7) -+ 20RE, (L)

C1SRE (L4 7) 4 GRS, (L4 27) ~ HE(L+ 37).
A formula for mod’ 6%(7), analogous to (13), is

1
c 2 - {0
mod€o, (7) == 2T§1{§(0,T). (17)

Substituting k(1) from Table 1 into (16), we find from (17) that mod®o2(7)is ezactly
proportional to 77377, for — 5<0<1. The same result was derived by Bernier [3] from a
frequency-domain integral.

The factor for converting J2,(t), /5 (1;7), and mod‘o2(7) to standard frequency and time

scaling is the same as (14), with To set to 1.

1V. Equi vaLENT DEGREES oF FREEDOM

By definition, the equivalent degrees of freedom (edf) of a random variable X is defined by

2
edf X = ?-(E)i) . (18)
var X

If X is distributed as a constant multiple of a x?, random variable, with v degrees of freedom,
then edf X = v. For example, the sample variance of n independent, identically distributed
Gaussians has n — 1 degrees of freedom. Even if X does not have such a distribution, edf X
can still serve as a convenient dimensionless measure of the confidence of X as an estimator
of its mean E X. In this study, | take this point of view with regard to V, not having
investigated the nature of its distribution. Since V is the sum of squares of correlaled mean-

zero Gaussians, it is reasonable to assume that V isapprozimately distributed as const * Xedf V-

10




In this case, approximate confidence intervals for mod o,(7) can be constructed, as described

for o, (7) by Howe, All an, and Barnes [8].

A. Discrete Time

Let us compute edf V. By (7) and (13),
1
EV = . r3(0;m); 19
27_2 z( 17“)1 ( )

that is, V is unbiased for mod o2 (7). Also from (7) we have

1 M-1 M:\l ) .
varV = —(5,;;]—\4_)5 Z L cov (z3m+im1az3m-i jml) : (20)
£=0 j==0

To compute the covariances in (20), we assume that z,(m) is a stationary Gaussian mean-zero
process. As indicated earlier, the assumption E 2,(m) = O is crucial; in practice, it means
that the effect of linear frequency drift on a time scale of order 7- is negligible. Since any two
jointly Gaussian mean-zero random variables X and Y satisfy cov (X, Y?) =2 (EXY)Q,
(20) becomes
_ M-1 8- 1 9

var V = (272M_)_2,-i¥1 JL'R‘ZO (i -j) m];m)] . (21)

The diagonal i— j=k,for h=1- M to M - 1, contains M — |k| identical term... Summing

over these diagonals converts the double sum to a single sum, which, combined with (18) and

(19), gives the main formula for edf V:

o1 + 2%1 (1 - —k—) ( d (km '111))2 (22)
edfV - M 2 M ) \Pz 1T ’

where
p(n; m) == .‘@g@i’?n)
z = TR(0;mn)-
Formula (22) is analogous to existing formulas for the edf of AVAR estimators (see [6] and ref-

erences therein). The main difference is that the ACV of z is computed from sixth differences

of the sacv of w instead of fourth differences of the cacv of .

11




Recall from (12) that each value of I2d(n;m) needed in (22) is obtained from seven
values of Rﬂ, (n). If no values of Rﬁ, (n) are stored in advance, it takes 7M evaluations of
4 (n) to compute (22). Walter's formula for var V ([1 3], eq.(32)) is a double sum requiring
5(2m - 1)(2M — 1) evaluations of Id(n). In practice, moreover, one can compute and store
the values R3(n),|n|< N, in advance. This shows the advantage of the third-difference
approach, which derives mod u:(T) from w,, instead of z.(m).

A note on numerical computation. The ACV ]{f(n; m) tends to zero as n— 00, yet is
obtained from differences of Rﬂ, (n), which tends to oo with n. Clearly, one should use double
precision for evaluating (12). Even so, the computed values of R‘Zi (n;m) can deteriorate
for large n, especially for nonintegral 8, when I3 (n) has to be computed from a ratio of
I functions. I was able to cure this problem by replacing the upper limit M —1 of the
summation in (22) by K — 1, where K is the smaller of M and 10m/m,. (In all actual

computations, m/m, is assumed to be an integer. )

B. Continuous Time

The computation of edf V¢ follows the same pattern. By (10),

1‘1{;:(0’ T)a

Ve = -
E 272

and, with the assumption that 2(¢;7), as a function of ¢, is a stationary Gaussian mean-zero

process,

2

var V€= 5
(2721

/ i (= 1) ddu
0 o

A change of variables converts the double integral to

2 (r -t) (I (t;7))*d,
v

12




in which we shall make the further change of variable { = 7. From Table 1 and (16), it can

be verified that
R(rasr)  R(as))

Re(0;7) — Re(0;1) ¢

(g’his is a scaling property of continuous-time power-law noise.) Thus, defining

ey 1G(z1)

we obtain

1 2 ¢r TN (o ())2
arve =y (1-5) v’ e =

where p = TIr.

V. EFFecT OF ESTIMATION PeRI oD

Formula (22) was used to generate tables of edf V for combinations of N,m, and m;. Recall
that N is the number of time residuals in the data set, m==7/70, where 7 is the averaging
time, and M1=T7; /7o, the estimation stride, where 71 is the estimation period. From here
on, we also assume the divisibility condition, which says that the estimation period divides

evenly into the averaging time, that is,

T m

T Ty -
where risan integer. Thu., the estimation stride 1 is restricted to divisors of m. This con-
dition allows V and edf V to be calculated from the subsampled arrays Wjm; and R (),
respectively. For each (N,m,m;) combination, the number M of estimation summands to

be used in” (22) is calculated by (6), and the parameter p is defined by

1
ngzﬁg. (24)

13




A selection of edf values is shown in Table 2 for integral values of the power-law exponent
B. Values were also computed for half-integral values of £, but are not shown; as expected,
they interpolate the given values, For now, ignore the “%” rows, and observe how edf depends
on r (or my) for N = 1024, m fixed. For each B, and for m > 4, it is clear that any value
of r between 4 and m gives a value of edf that is nearly maximal for that m and 8. As the
listings for m = 2 and 3 show, we should take r =m (i.e.,, m1=1) in case m < 4. Here is
an empirical result.

Assume an averaging lime T at most 1/4th the duration of the time-deviation record. For
each discrete-time power law between white phase and random-walk frequency, any estimation
period 7ybetween 1o and max (To, T/4) that divides evenly into T gives an MVAR estimator
V whose edf is within 8 percent of the marimal value for r.

Table 2 shows that the variation of edf V with r is greatest for white phase (3 = O). Also,
we see that p by itself is a rough estimate of edf V, especially for r in the recommended range
min (4, m)<r <m.

The choice of estimation period T,may depend on a tradeoff between convenience and
computational effort. For sir'nplicity, one can always choose 7-,= 70. If the data set is large,
one can choose the largest accept able value, 73 = T/4, to minimize the number M of terms

needed to calculate V from (7).

VI. Lower BouNnDps FOR MVAR EDF

The aim of this section is to uncover simple approximation formulas for edf V that can be
used in practice in place of the exact summation (22). There ar e two rigorous lower-bound

formulas that can serve this purpose.

14




A. Discrete Time

Up to now, we have concentrated on a time-domain formulation of edf V. The following

result is proved by a frequency-domain argument, which is not given here.

Thecorem 1 Let the time residuals z,, be a discrete-time power-law process (sample period
7) with spectrum (11), where -- 92 < < O. Assume thal x,, has stationary Gaussian mean-
zero second increments. Let m = mqr, where myj and r are positive integers. Using (4), (5),
(7), and any positive integer M, form the war estiinalor V with averaging time 7 = m7g

and estimation period 77 = In70- Then

M 212
ede _>_ T"J—, (25)

where

m/2 sin® .
T

P

S L dx
[M=sin ‘(nz/r)|" %

In other words, we have a bound of form edf V > op, where p = M/r as above, Tables of

:1”2 sin!? (nz)

avs 8,m, and r can be generated by numerical integration.

B. Continuous Time

It is much easier to derive a useful lower bound for edf V€. Let p > 2. From (23) we have

e = [ e e o) o

pr
2 o 1 [2? c ,
< 2 [T @ @] [ a.
P LJo PpJo
This gives a bound of form
edf Ve > —“F . p>2. (26)
1_ Pl
P




The constants a. and al, which depend only on 3, are computed by numerical integration.

To use this expression as an approximation to edf V, we again let p== M/r.

C. An edf Approximation Strategy

The right sides of (25) and (26) can be regarded as candidate approximations for edf V. To
assess their quality and to choose between them, tables were generated for a selection of N,
7n, and r. The following empirical strategy and error statement emerged.

Assume discrcle-time power-law phase noise with ezponent between white phase and random-
walk frequency, at least 16 time-residual points, an averaging time T af most 1/5th the du-
ration of the measurement, and an estimation period 71 between 70 and max (o 7/4) that
divides evenly into T. In our notation, O >822 —4, N 216, m< N/5, and ™M = rm,,
where 1 is an inleger between min(m, 4) and I n.

For In =1 or 2, the discrete-time lower bound (25) is used as an approzimation for
edf V. In al other cases, the continuous-time lower bound (26) is used. The relative error
of this stralegy is observed to be at most +11.1 percendt.

To implement this approwimation in practice, use the formula

e (27)

where p = M/r, M is obtained from (6), and the coefficienls ap, ay, as junctions of m and
B, are drown from Table 5'.

To balance the errors, it was found expedient to reduce the continuous-time edf approxi-
mation, for white phase only, by 5 percent. Table 3 includes this adjustment. Each “%” row
in Table 2 shows the percentage errors of (27) for the row above. Table 3 represents the full

range of observed errors.

16




VII. Cowounso NOISE SPECTRA

The foregoing results and methods assume a discrete-time phase noise spectrum proportional
to (11) for some fixed exponent (. If that were indeed the case, our statistical efforts ought
to be directed toward estimating the two-parameter set consisting of 3 and the constant of
proportionality. Instead, as usual, we find ourselves using parametric tools to evaluate the
confidence of a nonparametric statistic. The value of edf V depends on B. What can we do

in the presence of a polynomial phase noise model

Se(f) = Zgﬁ |sin(27 f70)|? (28)
B

a finite sum of power-law spectra? Some help is given by the following theorem, which,

although weak and perhaps obvious, is better than no knowledge at all about the situation.

Theorem 2 Letthe phase noise be a finite sum of independent component noises with sta-
tionary Gaussian mean-mm sccond increments. Form an war estimalor V from the given

phase noise, and corresponding estimators Vi from the components. Then
' edekainedf Vi.

In other words, we never do worse than the worst component.

To apply this theorem to the situation (28), assunie that the component 3 values are all
in some subintervalof [ -4, (] (the whol e range, perhaps). Use (27)and Table 3 to compute
edf V3 for each tabulated § in the subinterval, and take the smallest value as a conservative
estimate of edf V. For example, if one believes that the noise has components between white
phase and flicker phase, perhaps from prior knowledge, perhaps as evidenced by a log-log
plot of mod u vs -with slopes between -3/2 and -1, then one can minimize (27) over the first

three rows of Table 3.
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The proof of Theorem 2, although not difficult, is not given here. It can be generalized to
AVAR estimators and other situations involving averages of the square of a stationary Gaussian
mean-zero process. Its usefulness for mvar is enhanced by the relatively weak dependence
of estimator edf on 3, as can be seen in Table 2. An inspection of similar tables for fully
overlapped Avar estimators [6][12] shows a much sharper dependence on 3, especially for
large 7/7o- For MVAR, minimizing over a set. of 8 causes a smaller loss of accuracy in the

computation of estimator edf, given imperfect knowledge of the phase spectrum.

VIIl. CONCLUSI ONS

Although the overall problem of estimating modified Allan variance mvArR may appear to
be more difficult than the same problem for conventional Allan variance Avar, theoretical
and numerical results calculated here from the third-difference approach show that in some
ways the sit uation is actually reversed. An attractive expression for the equivalent degrees of
freedom (edf) of MvARr estimators in the presence of power-law phase noise was derived, and
simple approximations constructed. Numerical computations of edf yielded a rationale for
choosing the est i mat ion period or stride: we found empirically that the use of an estimation
period up to one-fourth the averaging time does not appreciably degrade the confidence of the
estimator below that of the fully overlapped estimator. Often, in fact, there is no degradation.
The computations also revealed that the extra filtering inherent in mvar causes the edf of
an estimator to be less sensitive to the power-law exponent than the edf of a typical Avar
estimator. . Consequent y, MVAR error bars can be more robust against spectrum uncertainties
than Avar error bars.

The most important limitation on these results, especially for long tests of oscillators, is

that linear frequency drift must be negligible. If a di ift rate is known from considerations

18



external to the immediate data set, then one can remove it from the phase data, and we

are back to the case of zero drift. For AVAR, it is known that estimation of drift from
the data themselves, and removal therefrom, causes negative AVAR estimator biases that
worsen as averaging time 7 increases. The use of three-point [14] [15] or four-point [4] drift
estimators, which extract a quadratic component of the t ime-residual sequence z,, simplifies
calculations of the mean and variance of estimators of avar with drift removed. | have no
doubt that similar calculations for mvar estimators can be made on the basis of four-point
drift estimators that extract a cubic component of the sequence wuy, of cumulative sums of

Ty .

The work described in this study was performed by the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and Space

Administration.
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Table 1. Generalized Autocovariances Derived from Discrete-Time and Continuous-Time

Power-Law Phase Noises.
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Table 3: Coefficients for Approximating MVAR Estimator edf
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